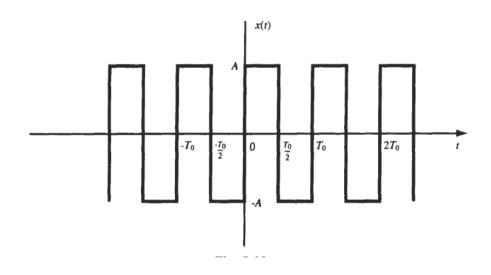

Sheet (3)

- **5.4.** Determine the complex exponential Fourier series representation for each of the following signals:
 - (a) $x(t) = \cos \omega_0 t$
 - (b) $x(t) = \sin \omega_0 t$
 - $(c) \quad x(t) = \cos\left(2t + \frac{\pi}{4}\right)$
 - (d) $x(t) = \cos 4t + \sin 6t$
 - (e) $x(t) = \sin^2 t$
- **5.5.** Consider the periodic square wave x(t) shown in Fig. 5-8.
 - (a) Determine the complex exponential Fourier series of x(t).
 - (b) Determine the trigonometric Fourier series of x(t).



- **5.7.** Consider the periodic square wave x(t) shown in Fig. 5-10.
 - (a) Determine the complex exponential Fourier series of x(t).
 - (b) Determine the trigonometric Fourier series of x(t).

Note that x(t) can be expressed as

$$x(t) = x_1(t) - A$$

where $x_1(t)$ is shown in Fig. 5-11. Now comparing Fig. 5-11 and Fig. 5-8 in Prob. 5.5, we see that $x_1(t)$ is the same square wave of x(t) in Fig. 5-8 except that A becomes 2A.

Sheet (3)

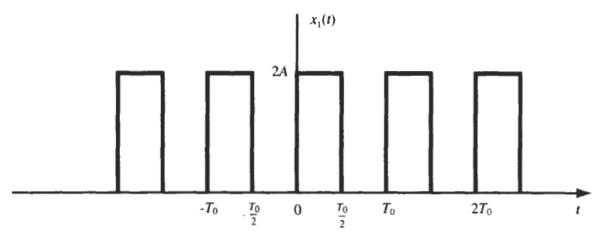


Fig. 5-11

5.9. Consider the triangular wave x(t) shown in Fig. 5-13(a). Using the differentiation technique, find (a) the complex exponential Fourier series of x(t), and (b) the trigonometric Fourier series of x(t).

The derivative x'(t) of the triangular wave x(t) is a square wave as shown in Fig. 5-13(b).

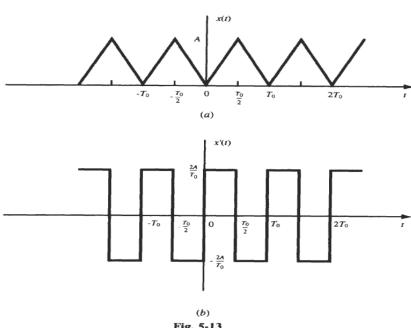


Fig. 5-13